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ABSTRACT

Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer

are investigated. A simple mode I is proposed in wh ich the shock wave is convected from its

mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the

shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean

square pressure fluctuation and spectral density are in excellent agreement with avai lable

experimenta I data.

ii



TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS

1.0 INTRODUCTION

2.0 ANALYSIS

2.1 Equation of Motion of the Shock Wave

2.1.1 Mean Square Shock Displacement
2.1 .2 Correlation Function and Integral Scale
2.1.3 Pressure Fluctuations
2.1.4 Spectral Density

2.2 Prediction of Pressure Fluctuations Ahead of a 450 Wedge

2.2.1 Flow Parameters
2.2.2 Root Mean Square Pressure Fluctuations
2.2.3 Spectrum

3.0 CONCLUSIONS

REFERENCES

iii

i i

iii

iv

v

5

5

6
7 ..'

13
14

14

15
17
18

20

21



Figure

1.

2.

3.

4.

5.

LIST OF FIGURES

Composite Schematic of Protuberance Flow Field Characteristics,
M = 1.60, hiD = 2.0, from Reference 1

CD

Longitudinal Distribution of Pressure Fluctuations and Typical Power
Spectra in Vicini'ty of Supersonic Flow Separation Ahead of a 450

Wedge, from Reference 2

Domain of Integration

Longitudinal Distributions of Steady and Fluctuating Pressures,
from Reference 2

Comparison of Predicted Spectrum with Measured Spectra

iv

2

3

9

16

19



LIST OF SYMBOLS

a

D

f

h

M

p

p

q

R

=

=
=
=

=

=
=
=
=

Sound speed

Diameter of protuberance; diameter of axisymmetric model

Frequency

Height of step or protuberance

Mach number

Fluctuating pressure

Mean static pressure

Dynamic pressure

Correlation function

t = Time

u

x

x

=
=

=

Velocity

Displacement of shock wave from mean location

Streamwise coordinate

R. (T) dT
I

CD

;:Integral scale; T =
I

See Equation (2)

Boundary layer thickness

Root mean square turbu lent Mach number

Random function representi ng turbu lent ve loci ty in boundary layer

Variable of integration

Density

Time separation

=
=
=

=
=
=

=

=

p

~ (t)

~

T

T ,T
~ x

= Spectral density

Subscripts

o

T

CD

=
=

=

Condition just ahead of shock wave

Turbulent quantity

Free-stream condition

Other Symbo I

< ) Ensemble average

v



1.0 INTRODUCTJON

An important source of surface pressure fluctuations on high speed aerodynamic vehicles is the

oscillation of shock waves. Figure 1 shows the static and fluctuating pressure levels associated

with supersonic flow ahead of a flare or a three-dimensional protuberance. Other basic flow

geometries containing oscillating shock waves exist, such as oscillation of a near normal

terminal shock in transonic flow. Reference 1 provides detai led descriptions of fluctuating

flow fields, and contains a comprehensive review of available experimental data. The flow

field of Figure 1 will be briefly described here to provide a framework for the shock oscillation

model presented in the next section.

There are three basic sources of fluctuating pressure in the flow field shown in Figure 1: the

attached turbulent boundary layer ahead of the shock; the separated region behind the shock;

and the osci IIation of the shock itself. Figure 2 shows spectra of pressure fluctuations in these

three parts of the flow fie Id ahead of a 450 wedge, from Reference 2. Robertson (Reference 1 )

has pointed out that the spectrum at the shock location represents the spectrum associated with

an oscillating shock wave alone, plus some fraction of the attached and detached spectra, as

these two environments alternately appear at the mean shock location as the shock oscillates.

Fluctuations from the attached boundary layer are much smaller than from separated flow and

may be neglected, so the spectrum of fluctuations at the mean shock location is given by shock

osci IIation and separated flow environments. In Figure 2, the spectral shape follows the separated

flow spectrum for f 5 / u > 0.2; the spectrum for shock oscillation alone would follow the
o 0

dashed extrapo lation.

Much of the analytical work on oscillating shock waves has followed the approach used by

Tri IIing (Reference 3) for interaction of a shock wave with a laminar boundary layer. In that

analysis, a harmonic perturbation to the mean flow was assumed, and it was shown that oscilla­

tion could be self-sustaining for certain frequencies. This approach is felt to be unsatisfactory

to the present problem for two reasons. First, the source of the initial disturbance is not

identified. In the experimental investigation of Reference 4, a spark discharge was used to

artificially stimulate oscillation. Second, Trilling's analysis would lead us to expect dominant

frequencies in the spectrum. The spectrum of Figure 2 does not contain any such peaks.
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The broad band nature of observed shock osc illation spectra in the presence of a turbu lent

boundary layer suggests the following model. The mean location of the shock is a stable

position, governed by mean flow conditions. (If this were not so, the shock would not be

there.) As each turbu lent eddy passes, the shock is convected upstream or downstream.

The stabi lity of the mean shock location causes a limit to the excursion distance. In the next

section, an equation of motion for shock location is postulated, based on convective displace­

ment and a linear restoring mechanism. Statistical properties of the shock motion are found

from which mean square pressure fluctuations and spectra are calculated.
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2.0 ANALYSIS

2.1 Equation of Motion of the Shock Wave

Velocity fluctuations in the x-direction (parallel to the wall) at a fixed point within the

boundary layer may be represented as

= a E fJ (t)
00

(1 )

where fJ(t) is a random function of time with <fJ2 ) = 1 , and E is the turbulent Mach
1

number <u~ )2/ a
oo

• A one-dimensional model is adopted, neglecting velocity f1uctua-
x

tions in other directions. The shock wave within the boundary layer is then convected in the

x-direction with speed u
T

x

After the shock wave is displaced a distance x (x small compared to scale length of the flow

geometry), the flow geometry will be disturbed by an amount proportional to x. This in turn

will disturb the pressure field by an amount proportional to x. The shock wave will then move

with velocity proportional to x. Since the shock will move back toward its original position,

this restoring velocity is given by

u . = -,Bx
restor I ng

(2)

where (3 is a constant depending on the flow geometry. This constant wi II be deduced as the

ana Iys is proceeds.

The net speed of the shock wave is the sum of Equations (1) and (2):

u = a E fJ(t) -,3x
00

The equation for the shock location is

5
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dx
dt + {3x

Equation (4) may be integrated to give

= E a ~ (t)
00

(4)

t
x = e - {3 tEa00 f ~(~ )e{3 ~ d g

o

In the following subsections, various statistical properties of x are calculated, leading to

predictions of the intensity and spectral distribution of pressure fluctuations.

(5)

2.1.1 Mean Square Shock Displacement - Squaring Equation (5) and taking the ensemble

average,

(6)

Changing integration variables from {~1 ' ~ 2} to center of mass and relative coordinates

J(~ + ~)/2 , !; -!;}, it is straightforward to obtain the following equation for t » T
~ 1 2 2 1· ~

(7)

where:
T = fOO R (t) dt
~ 0 ~

It is assumed that x = 0 at t = O.

R
~

=

The calculation leading to Equation (7) is identical to the one given in Reference 5 for the

Brownian motion of a particle with linear damping. Details of the calculation may be found

in the next section, where the correlation function is obtained.
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For large time, t» -F ' <X
2 > reaches a finite limit:

(8)

Becau~e of this constant limit, xfor large time may be treated as a stationary random function.

It is interesting to compare Equation (8) with the well known result for {3 = 0, corresponding to

an unrestricted random walk:
'--~ ,

<X 2 >{3=O = 2 E 2 a~ T f.l t (9)

Without the restoring mechanism, displacement continues to grow with time. The asymptotic

value given by Equation (8) is also given by Equation (9) when t = 1/2{3. If the restoring

mechanism is thought of as limiting the time during which an unrestricted random walk takes

place, then it is clear that {3 must be related to the integral time scale of the x motion. The

integral time scale is found from the correlation function, which will now be calculated.

2.1.2 Correlation Function and Integral Scale - The correlation function R (T) is defined
x

R (t, t ) =
x 1 2

<x (t ) x (t ) >
I 2 (10)

x is assumed to be homogeneous and isotropic, so that

R (t t) = R (t - t ) = R (t - t ) = R (T)
X12 Xl2 x 21 x

7
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Working from Equation (5) and setting <x(t ) x(t ) = (x x) ,
1 2

In view of Equation (11), take t = t and t = t + I. Equation (12) becomes:
. 1 2

t t+1
(xx) = e- 2pt e -{3I E 2 a 2 r d~ r d~

00 Jo 1 Jo 2
. (13)

where R (~- ~ ) = (1-1 (~ ) 1-1 (~ ) (recall that ( 1-1 2
) = 1). The form of Equation (13)

1-1 2 1 1 2

suggests the obvious change of variable to center of mass and relative coordinates:

~ + ~
1 2

2

= ~ - ~
2 1

(14)

The Jacobian J =
a(~ , ~ )

1 2 = so that d~ d~ = d~ d~ •
012

The range of ~ is from -t to t +I. If the ~ integration is performed first, this range
o

gives the integration limits for ~, and the limits for ~ become a function of ~ as well as
o

t and I. The limits on ~ are seen with the aid of Figure 3, a sketch of the integration
o

domain in {~1 ' ~Jspace. These limits are:

~$I, III s ~o S t + ~
2 2"

(15)

l.li $ ~o $ t +1 - J..
2 2

8
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Equation (13) becomes:

(x x)

f
t + J....

= e-2{3t e-{3T E2a2 iT d~ f 2 d~
00 -t .lll. 0 .

2

or

t+T

+ f d~
T

t+T- ..i
r 2 d~JJt1 0

R (~)
~

-2{3~ }e 0 (16 )

(xx) (17)

where

t+ 1-
-2{3~

2,6 t
[ e {3 ~ _ e {31 ~I e -2{3 t ]I 1m

2
d~

e= e 0 =
1 0 2{3

2

(18)

t+T- ~ -2{3 2,6t
[ 2{3T -,6~ {31~ I -2{3 t ]I ~ e ~o d~ =

e= 2T e e - e e
2 lti 0

2

Using I and I in Equation (17) and re-arranging terms,
1 2
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<x x ) = 2{3

t+T

-2{3t! {31 ~ Ie e
-t

(19)

Now, R (~) _ 0 for ~ » i
~ ~

CD
=1 R (~) d~. (Note that ~ must simply be larger than

o
several T for this condition to be satisfied.) If we assume that R - 0 quickly enough so

~ ~

that e{3~ R~(~)_O, then for t» T ~ we may replace the limits -t and t+T by -CD

and +CD. Doing so, and taking the limit t -CD so that the last term in Equation (19)

vanishes,

<x x) = 2{3
(20)

If 1/{3 » T , then e{3~ and e -(3~ may be replaced by 1 in the integrals. Making this
~

approximation, and re-arranging the integrals, we obtain:

<x x) =
2{3

(21 )

For T» T , the upper limit on the second integral may be changed to CD. It is expected
~

that 1/{3» T (and this approximation has been made above), so that T wi" be larger than
~

T over most of the range of the correlation function. This gives (CD R (~) d~ = T for
~ Jo ~ ~

both integrals, so that the result for T» T (again, this condition is just T larger than
~

several T ) is
~

11



(xx)

The correlation function is:

-{3r
e (22)

R (r) =
x

-{3r
= e (23)

The integral scale of x fluctuations is thus

CD {3 1
r

x
= f e - r dr = "Fo

(24)

This bears out the intuitive notion that ,3 is closely related to the integral time scale of x

flue tuations.

The mean square x excursion is given by using this in Equation (8):

(25)

For r < r , Equations (22) through (25) are not valid. For r <r , {3r« 1 , so that
~ ~

e± {3r ::::: 1 ± (3r. Equation (21) may be written:

(x x) :::::.
2{3 (26)

For r« r , the second integral in Equation (26) is approximately r. Thus
~

12



<x x) ::::: (3
T

tJ

(3
T

tJ

(27)

for small T. This resu It wi II be used later in discussing the predicted spectrum.

2.1.3 Pressure Flucutations - If the pressure due to the shock wave at its mean location is

P(x), then the pressure at time t is given by P (x - x (t)). The fluctuating pressure from

shock osci IIation is then

p (x, t) = P(x-x(t)) - P(x)

where x denotes the streamwise coordinate and x(t) is the excursion. The mean square

pressure fluctuation is:

<p2) = <[P(x-x(t)) _ p(x)]2)

If ~ is small, P (x - x) may be expanded in a Taylor series:

< p2 ) = < [P(x) - x(t) P'(x) + •••. _ P (x)] 2 >

P
so that for ~ « P'

<p2) =<[~ (t) p'(X)]2) = [p'(x)]2(X 2 )

(28)

(29)

(30)

(31 )

1 1

This is accurate only when <x 2 >2 is small compared to shock thickness. If < X2 )2 is

not small, Equation (29) would have to be used. This would require the probability distribution

function of x , whi ch has not been ca leu lated.
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2.1.4 Spectral Density - The spectral density of the mean square pressure fluctuations is

defined as the Fourier transform of the correlation function:

co
if> (f) = 4 <p2 ) 1 R (T) cos 21ff dT

o p
(32)

where the factor 4 <p2 >appears so that J: co if> (f) df = <p2 >. This definition of if> is

consistent with the notation of Reference 1 •

Assuming that <x 2 > is small enough so that Equation (31) is valid, R (T) = R (T). Using
p x

Equation (23) in Equation (32), it is straightforward to obtain

if>(f) = (33)

Because Equation (23) is not accurate for T < T , Equation (33) is not accurate for
IJ

1 1
f> -2-- • For f» 2 ' if> (f) is given by the transform of Equation (27). This

1fT ITT
IJ IJ

behaves asymptotically as f- 3 , compared to f- 2 for Equation (33). Equation (33), then

will tend to be too large at high frequencies f> -2-
1
-

1fT
I..i

2.2 Prediction of Pressure Fluctuations Ahead of a 450 Wedge

The fluctuating pressure intensity and spectra are given by Equations (31) and (33), with

Equation (8) giving <x 2 > and Equation (24) relating T to (3. Given the mean flow
x

conditions, the parameters required are the boundary layer turbulent intensity E and integral

scale T ,and the integral scale T of the shock motion.
I..i x

Predictions will now be made for the 8 inch, 450 wedge of Reference 2. This particular set

of measurements is chosen because the two-dimensional geometry is simple, and because of the

good quality of both fluctuating and mean measurements.

14



2.2.1 Flow Parameters - The following are the mean flow parameters required:

M = 2.0
00

8 = 4 inches
0

h = 8 inches

The pressure gradient at the mean shock location is requi red. Figure 4 gives the mean pressure

coefficient and root mean square fluctuating pressure for several test models in Reference 2.

Measuring the slope for the 450 wedge case at the mean shock location,

P' (0)
qoo

= 0.42 -h- = 0.21 (34)

From Equation (32), the integral scale is given by:

T.
I

00

= r R. (T) dT =Jo I

1
""4

4>.(0)
I

(35)

where i is I-' or x. The integral scales are easily found from the 0 frequency point in

Figure 2, and are

8
T = 25 0

x u
0

(36)
8

T = 1.9 0

I-' u
0

,
From Figure 4, (p2)"2 / q = 0.003 for the boundary layer. Turbulent velocity fluctuations

00

are related to pressure fluctuations by (Reference 6):

= 0.7p(u 2 )=

15

(37)
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Taking p = p 00 '

1

Us i ng <p 2 )"2 = 0.003 q ,
00

1.4
(38)

E 2 = 0.00214 M 2 .
00

All required parameters have now been obtained.

2.2.2 Root Mean Square Pressure Fluctuations - Using the above values in Equation (8),

<x
2

) = E 2 a 2
'T 'T

00 ~ x

8 8

= 0.00214 M 2 a 2 • 25 0 1.9 0
•00 00 u u

0 0

= 0.102 8 2

0

so that the root mean square displacement is

(39)

= 0.328
o

(40)

This is smaller than the shock thickness (which is of order 8 ), so that Equation (31) may be
o

used for the pressure. The fluctuation at the mean shock locati on is

17



1 1 qco<p2 >"2 = pl(O) <X
2 >"2 = 0.214 b . 0.32 5

0
0

.1<p2 >2
0.68

(41 )
=

qco

This is in excellent agreement with the value of OJ in Figure 4.

2.2.3 Spectrum - Figure 5 shows the predicted spectrum, Equation (33), along with the

shock spectrum from Figure 2 and two spectra measured by Robertson (Reference 1) for three­

dimensional protuberances. Except for bei'ng 'slightly high at higher frequencies, the agreement

is excellent. f 5/u = 10-1 corresponds approximately to f = ~ , where Equation
L7T'T

~

(33) is not expected to be accurate. The slope of the measured spectra at this point corresponds

to f- 2
• 6 , which is between the f- 2 behavior of Equation (33) and the f- 3 behavior of the

high frequency limit discussed in Section 2.1.4. A spectrum calculated from Equation (21)

wou Id show even better agreement with the data.

Above f 50 /uco::::: 2 • 10-1 , the measured spectrum is dominated by separated flow

fluctuations, as pointed out by Robertson (Reference 1), and the present analysis does not

apply.
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3.0 CONCLUSIONS

A simple mechanism has been proposed for the pressure fluctuations near a shock wave inter­

acting with a turbulent boundary layer. The shock wave is convected from its mean location

by velocity fluctuations in the turbulent boundary layer, while stability of the mean flow tends

to restore the shock wave to its original position. The restoring mechanism is assumed to be

linear. The motion of the shock wave, given by Equation (5), is quite similar to the Brownian

motion of a particle. The mean square displacement tends to a constant value at large time,

given by Equation (8), so that the motion may be treated as a stationary random function. The

mean square pressure fluctuation, Equation (31), and spectral density, Equation (33), calculated

from this 'shock motion are in excellent agreement with experimental data.

Because of the excellent agreement of the present theory with experimental data, and the

straightforward physical model employed, it is concluded that turbulent boundary layer

fluctuations are the dominant cause of shock wave osci IIation in the case of flare and pro­

tuberance induced separated flow.
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